1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
// Copyright 2024 New Vector Ltd.
// Copyright 2022-2024 The Matrix.org Foundation C.I.C.
//
// SPDX-License-Identifier: AGPL-3.0-only
// Please see LICENSE in the repository root for full details.

//! A crate to store keys which can then be used to sign and verify JWTs.

use std::{ops::Deref, sync::Arc};

use der::{zeroize::Zeroizing, Decode, Encode, EncodePem};
use elliptic_curve::{pkcs8::EncodePrivateKey, sec1::ToEncodedPoint};
use mas_iana::jose::{JsonWebKeyType, JsonWebSignatureAlg};
pub use mas_jose::jwk::{JsonWebKey, JsonWebKeySet};
use mas_jose::{
    jwa::{AsymmetricSigningKey, AsymmetricVerifyingKey},
    jwk::{JsonWebKeyPublicParameters, ParametersInfo, PublicJsonWebKeySet},
};
use pem_rfc7468::PemLabel;
use pkcs1::EncodeRsaPrivateKey;
use pkcs8::{AssociatedOid, PrivateKeyInfo};
use rand::{CryptoRng, RngCore};
use rsa::BigUint;
use thiserror::Error;

mod encrypter;

pub use aead;

pub use self::encrypter::{DecryptError, Encrypter};

/// Error type used when a key could not be loaded
#[derive(Debug, Error)]
pub enum LoadError {
    #[error("Failed to read PEM document")]
    Pem {
        #[from]
        inner: pem_rfc7468::Error,
    },

    #[error("Invalid RSA private key")]
    Rsa {
        #[from]
        inner: rsa::errors::Error,
    },

    #[error("Failed to decode PKCS1-encoded RSA key")]
    Pkcs1 {
        #[from]
        inner: pkcs1::Error,
    },

    #[error("Failed to decode PKCS8-encoded key")]
    Pkcs8 {
        #[from]
        inner: pkcs8::Error,
    },

    #[error(transparent)]
    Der {
        #[from]
        inner: der::Error,
    },

    #[error(transparent)]
    Spki {
        #[from]
        inner: spki::Error,
    },

    #[error("Unknown Elliptic Curve OID {oid}")]
    UnknownEllipticCurveOid { oid: const_oid::ObjectIdentifier },

    #[error("Unknown algorithm OID {oid}")]
    UnknownAlgorithmOid { oid: const_oid::ObjectIdentifier },

    #[error("Unsupported PEM label {label:?}")]
    UnsupportedPemLabel { label: String },

    #[error("Missing parameters in SEC1 key")]
    MissingSec1Parameters,

    #[error("Missing curve name in SEC1 parameters")]
    MissingSec1CurveName,

    #[error("Key is encrypted and no password was provided")]
    Encrypted,

    #[error("Key is not encrypted but a password was provided")]
    Unencrypted,

    #[error("Unsupported format")]
    UnsupportedFormat,

    #[error("Could not decode encrypted payload")]
    InEncrypted {
        #[source]
        inner: Box<LoadError>,
    },
}

impl LoadError {
    /// Returns `true` if the load error is [`Encrypted`].
    ///
    /// [`Encrypted`]: LoadError::Encrypted
    #[must_use]
    pub fn is_encrypted(&self) -> bool {
        matches!(self, Self::Encrypted)
    }

    /// Returns `true` if the load error is [`Unencrypted`].
    ///
    /// [`Unencrypted`]: LoadError::Unencrypted
    #[must_use]
    pub fn is_unencrypted(&self) -> bool {
        matches!(self, Self::Unencrypted)
    }
}

/// A single private key
#[non_exhaustive]
#[derive(Debug)]
pub enum PrivateKey {
    Rsa(Box<rsa::RsaPrivateKey>),
    EcP256(Box<elliptic_curve::SecretKey<p256::NistP256>>),
    EcP384(Box<elliptic_curve::SecretKey<p384::NistP384>>),
    EcK256(Box<elliptic_curve::SecretKey<k256::Secp256k1>>),
}

/// Error returned when the key can't be used for the requested algorithm
#[derive(Debug, Error)]
#[error("Wrong algorithm for key")]
pub struct WrongAlgorithmError;

impl PrivateKey {
    fn from_pkcs1_private_key(pkcs1_key: &pkcs1::RsaPrivateKey) -> Result<Self, LoadError> {
        // Taken from `TryFrom<pkcs8::PrivateKeyInfo<'_>> for RsaPrivateKey`

        // Multi-prime RSA keys not currently supported
        if pkcs1_key.version() != pkcs1::Version::TwoPrime {
            return Err(pkcs1::Error::Version.into());
        }

        let n = BigUint::from_bytes_be(pkcs1_key.modulus.as_bytes());
        let e = BigUint::from_bytes_be(pkcs1_key.public_exponent.as_bytes());
        let d = BigUint::from_bytes_be(pkcs1_key.private_exponent.as_bytes());
        let first_prime = BigUint::from_bytes_be(pkcs1_key.prime1.as_bytes());
        let second_prime = BigUint::from_bytes_be(pkcs1_key.prime2.as_bytes());
        let primes = vec![first_prime, second_prime];
        let key = rsa::RsaPrivateKey::from_components(n, e, d, primes)?;
        Ok(Self::Rsa(Box::new(key)))
    }

    fn from_private_key_info(info: PrivateKeyInfo) -> Result<Self, LoadError> {
        match info.algorithm.oid {
            pkcs1::ALGORITHM_OID => Ok(Self::Rsa(Box::new(info.try_into()?))),
            elliptic_curve::ALGORITHM_OID => match info.algorithm.parameters_oid()? {
                p256::NistP256::OID => Ok(Self::EcP256(Box::new(info.try_into()?))),
                p384::NistP384::OID => Ok(Self::EcP384(Box::new(info.try_into()?))),
                k256::Secp256k1::OID => Ok(Self::EcK256(Box::new(info.try_into()?))),
                oid => Err(LoadError::UnknownEllipticCurveOid { oid }),
            },
            oid => Err(LoadError::UnknownAlgorithmOid { oid }),
        }
    }

    fn from_ec_private_key(key: sec1::EcPrivateKey) -> Result<Self, LoadError> {
        let curve = key
            .parameters
            .ok_or(LoadError::MissingSec1Parameters)?
            .named_curve()
            .ok_or(LoadError::MissingSec1CurveName)?;

        match curve {
            p256::NistP256::OID => Ok(Self::EcP256(Box::new(key.try_into()?))),
            p384::NistP384::OID => Ok(Self::EcP384(Box::new(key.try_into()?))),
            k256::Secp256k1::OID => Ok(Self::EcK256(Box::new(key.try_into()?))),
            oid => Err(LoadError::UnknownEllipticCurveOid { oid }),
        }
    }

    /// Serialize the key as a DER document
    ///
    /// It will use the most common format depending on the key type: PKCS1 for
    /// RSA keys and SEC1 for elliptic curve keys
    ///
    /// # Errors
    ///
    /// Returns an error if the encoding failed
    pub fn to_der(&self) -> Result<Zeroizing<Vec<u8>>, pkcs1::Error> {
        let der = match self {
            PrivateKey::Rsa(key) => key.to_pkcs1_der()?.to_bytes(),
            PrivateKey::EcP256(key) => to_sec1_der(key)?,
            PrivateKey::EcP384(key) => to_sec1_der(key)?,
            PrivateKey::EcK256(key) => to_sec1_der(key)?,
        };

        Ok(der)
    }

    /// Serialize the key as a PKCS8 DER document
    ///
    /// # Errors
    ///
    /// Returns an error if the encoding failed
    pub fn to_pkcs8_der(&self) -> Result<Zeroizing<Vec<u8>>, pkcs8::Error> {
        let der = match self {
            PrivateKey::Rsa(key) => key.to_pkcs8_der()?,
            PrivateKey::EcP256(key) => key.to_pkcs8_der()?,
            PrivateKey::EcP384(key) => key.to_pkcs8_der()?,
            PrivateKey::EcK256(key) => key.to_pkcs8_der()?,
        };

        Ok(der.to_bytes())
    }

    /// Serialize the key as a PEM document
    ///
    /// It will use the most common format depending on the key type: PKCS1 for
    /// RSA keys and SEC1 for elliptic curve keys
    ///
    /// # Errors
    ///
    /// Returns an error if the encoding failed
    pub fn to_pem(
        &self,
        line_ending: pem_rfc7468::LineEnding,
    ) -> Result<Zeroizing<String>, pkcs1::Error> {
        let pem = match self {
            PrivateKey::Rsa(key) => key.to_pkcs1_pem(line_ending)?,
            PrivateKey::EcP256(key) => to_sec1_pem(key, line_ending)?,
            PrivateKey::EcP384(key) => to_sec1_pem(key, line_ending)?,
            PrivateKey::EcK256(key) => to_sec1_pem(key, line_ending)?,
        };

        Ok(pem)
    }

    /// Load an unencrypted PEM or DER encoded key
    ///
    /// # Errors
    ///
    /// Returns the same kind of errors as [`Self::load_pem`] and
    /// [`Self::load_der`].
    pub fn load(bytes: &[u8]) -> Result<Self, LoadError> {
        if let Ok(pem) = std::str::from_utf8(bytes) {
            match Self::load_pem(pem) {
                Ok(s) => return Ok(s),
                // If there was an error loading the document as PEM, ignore it and continue by
                // trying to load it as DER
                Err(LoadError::Pem { .. }) => {}
                Err(e) => return Err(e),
            }
        }

        Self::load_der(bytes)
    }

    /// Load an encrypted PEM or DER encoded key, and decrypt it with the given
    /// password
    ///
    /// # Errors
    ///
    /// Returns the same kind of errors as [`Self::load_encrypted_pem`] and
    /// [`Self::load_encrypted_der`].
    pub fn load_encrypted(bytes: &[u8], password: impl AsRef<[u8]>) -> Result<Self, LoadError> {
        if let Ok(pem) = std::str::from_utf8(bytes) {
            match Self::load_encrypted_pem(pem, password.as_ref()) {
                Ok(s) => return Ok(s),
                // If there was an error loading the document as PEM, ignore it and continue by
                // trying to load it as DER
                Err(LoadError::Pem { .. }) => {}
                Err(e) => return Err(e),
            }
        }

        Self::load_encrypted_der(bytes, password)
    }

    /// Load an encrypted key from DER-encoded bytes, and decrypt it with the
    /// given password
    ///
    /// # Errors
    ///
    /// Returns an error if:
    ///   - the key is in an non-encrypted format
    ///   - the key could not be decrypted
    ///   - the PKCS8 key could not be loaded
    pub fn load_encrypted_der(der: &[u8], password: impl AsRef<[u8]>) -> Result<Self, LoadError> {
        if let Ok(info) = pkcs8::EncryptedPrivateKeyInfo::from_der(der) {
            let decrypted = info.decrypt(password)?;
            return Self::load_der(decrypted.as_bytes()).map_err(|inner| LoadError::InEncrypted {
                inner: Box::new(inner),
            });
        }

        if pkcs8::PrivateKeyInfo::from_der(der).is_ok()
            || sec1::EcPrivateKey::from_der(der).is_ok()
            || pkcs1::RsaPrivateKey::from_der(der).is_ok()
        {
            return Err(LoadError::Unencrypted);
        }

        Err(LoadError::UnsupportedFormat)
    }

    /// Load an unencrypted key from DER-encoded bytes
    ///
    /// It tries to decode the bytes from the various known DER formats (PKCS8,
    /// SEC1 and PKCS1, in that order), and return the first one that works.
    ///
    /// # Errors
    ///
    /// Returns an error if:
    ///   - the PKCS8 key is encrypted
    ///   - none of the formats could be decoded
    ///   - the PKCS8/SEC1/PKCS1 key could not be loaded
    pub fn load_der(der: &[u8]) -> Result<Self, LoadError> {
        // Let's try evey known DER format one after the other
        if pkcs8::EncryptedPrivateKeyInfo::from_der(der).is_ok() {
            return Err(LoadError::Encrypted);
        }

        if let Ok(info) = pkcs8::PrivateKeyInfo::from_der(der) {
            return Self::from_private_key_info(info);
        }

        if let Ok(info) = sec1::EcPrivateKey::from_der(der) {
            return Self::from_ec_private_key(info);
        }

        if let Ok(pkcs1_key) = pkcs1::RsaPrivateKey::from_der(der) {
            return Self::from_pkcs1_private_key(&pkcs1_key);
        }

        Err(LoadError::UnsupportedFormat)
    }

    /// Load an encrypted key from a PEM-encode string, and decrypt it with the
    /// given password
    ///
    /// # Errors
    ///
    /// Returns an error if:
    ///   - the file is not a signel PEM document
    ///   - the PEM label is not a supported format
    ///   - the underlying key is not encrypted (use [`Self::load`] instead)
    ///   - the decryption failed
    ///   - the pkcs8 key could not be loaded
    pub fn load_encrypted_pem(pem: &str, password: impl AsRef<[u8]>) -> Result<Self, LoadError> {
        let (label, doc) = pem_rfc7468::decode_vec(pem.as_bytes())?;

        match label {
            pkcs8::EncryptedPrivateKeyInfo::PEM_LABEL => {
                let info = pkcs8::EncryptedPrivateKeyInfo::from_der(&doc)?;
                let decrypted = info.decrypt(password)?;
                return Self::load_der(decrypted.as_bytes()).map_err(|inner| {
                    LoadError::InEncrypted {
                        inner: Box::new(inner),
                    }
                });
            }

            pkcs1::RsaPrivateKey::PEM_LABEL
            | pkcs8::PrivateKeyInfo::PEM_LABEL
            | sec1::EcPrivateKey::PEM_LABEL => Err(LoadError::Unencrypted),

            label => Err(LoadError::UnsupportedPemLabel {
                label: label.to_owned(),
            }),
        }
    }

    /// Load an unencrypted key from a PEM-encode string
    ///
    /// # Errors
    ///
    /// Returns an error if:
    ///   - the file is not a signel PEM document
    ///   - the PEM label is not a supported format
    ///   - the underlying key is encrypted (use [`Self::load_encrypted`]
    ///     instead)
    ///   - the PKCS8/PKCS1/SEC1 key could not be loaded
    pub fn load_pem(pem: &str) -> Result<Self, LoadError> {
        let (label, doc) = pem_rfc7468::decode_vec(pem.as_bytes())?;

        match label {
            pkcs1::RsaPrivateKey::PEM_LABEL => {
                let pkcs1_key = pkcs1::RsaPrivateKey::from_der(&doc)?;
                Self::from_pkcs1_private_key(&pkcs1_key)
            }

            pkcs8::PrivateKeyInfo::PEM_LABEL => {
                let info = pkcs8::PrivateKeyInfo::from_der(&doc)?;
                Self::from_private_key_info(info)
            }

            sec1::EcPrivateKey::PEM_LABEL => {
                let key = sec1::EcPrivateKey::from_der(&doc)?;
                Self::from_ec_private_key(key)
            }

            pkcs8::EncryptedPrivateKeyInfo::PEM_LABEL => Err(LoadError::Encrypted),

            label => Err(LoadError::UnsupportedPemLabel {
                label: label.to_owned(),
            }),
        }
    }

    /// Get an [`AsymmetricVerifyingKey`] out of this key, for the specified
    /// [`JsonWebSignatureAlg`]
    ///
    /// # Errors
    ///
    /// Returns an error if the key is not suited for the selected algorithm
    pub fn verifying_key_for_alg(
        &self,
        alg: &JsonWebSignatureAlg,
    ) -> Result<AsymmetricVerifyingKey, WrongAlgorithmError> {
        let key = match (self, alg) {
            (Self::Rsa(key), _) => {
                let key: rsa::RsaPublicKey = key.to_public_key();
                match alg {
                    JsonWebSignatureAlg::Rs256 => AsymmetricVerifyingKey::rs256(key),
                    JsonWebSignatureAlg::Rs384 => AsymmetricVerifyingKey::rs384(key),
                    JsonWebSignatureAlg::Rs512 => AsymmetricVerifyingKey::rs512(key),
                    JsonWebSignatureAlg::Ps256 => AsymmetricVerifyingKey::ps256(key),
                    JsonWebSignatureAlg::Ps384 => AsymmetricVerifyingKey::ps384(key),
                    JsonWebSignatureAlg::Ps512 => AsymmetricVerifyingKey::ps512(key),
                    _ => return Err(WrongAlgorithmError),
                }
            }

            (Self::EcP256(key), JsonWebSignatureAlg::Es256) => {
                AsymmetricVerifyingKey::es256(key.public_key())
            }

            (Self::EcP384(key), JsonWebSignatureAlg::Es384) => {
                AsymmetricVerifyingKey::es384(key.public_key())
            }

            (Self::EcK256(key), JsonWebSignatureAlg::Es256K) => {
                AsymmetricVerifyingKey::es256k(key.public_key())
            }

            _ => return Err(WrongAlgorithmError),
        };

        Ok(key)
    }

    /// Get a [`AsymmetricSigningKey`] out of this key, for the specified
    /// [`JsonWebSignatureAlg`]
    ///
    /// # Errors
    ///
    /// Returns an error if the key is not suited for the selected algorithm
    pub fn signing_key_for_alg(
        &self,
        alg: &JsonWebSignatureAlg,
    ) -> Result<AsymmetricSigningKey, WrongAlgorithmError> {
        let key = match (self, alg) {
            (Self::Rsa(key), _) => {
                let key: rsa::RsaPrivateKey = *key.clone();
                match alg {
                    JsonWebSignatureAlg::Rs256 => AsymmetricSigningKey::rs256(key),
                    JsonWebSignatureAlg::Rs384 => AsymmetricSigningKey::rs384(key),
                    JsonWebSignatureAlg::Rs512 => AsymmetricSigningKey::rs512(key),
                    JsonWebSignatureAlg::Ps256 => AsymmetricSigningKey::ps256(key),
                    JsonWebSignatureAlg::Ps384 => AsymmetricSigningKey::ps384(key),
                    JsonWebSignatureAlg::Ps512 => AsymmetricSigningKey::ps512(key),
                    _ => return Err(WrongAlgorithmError),
                }
            }

            (Self::EcP256(key), JsonWebSignatureAlg::Es256) => {
                AsymmetricSigningKey::es256(*key.clone())
            }

            (Self::EcP384(key), JsonWebSignatureAlg::Es384) => {
                AsymmetricSigningKey::es384(*key.clone())
            }

            (Self::EcK256(key), JsonWebSignatureAlg::Es256K) => {
                AsymmetricSigningKey::es256k(*key.clone())
            }

            _ => return Err(WrongAlgorithmError),
        };

        Ok(key)
    }

    /// Generate a RSA key with 2048 bit size
    ///
    /// # Errors
    ///
    /// Returns any error from the underlying key generator
    pub fn generate_rsa<R: RngCore + CryptoRng>(mut rng: R) -> Result<Self, rsa::errors::Error> {
        let key = rsa::RsaPrivateKey::new(&mut rng, 2048)?;
        Ok(Self::Rsa(Box::new(key)))
    }

    /// Generate an Elliptic Curve key for the P-256 curve
    pub fn generate_ec_p256<R: RngCore + CryptoRng>(mut rng: R) -> Self {
        let key = elliptic_curve::SecretKey::random(&mut rng);
        Self::EcP256(Box::new(key))
    }

    /// Generate an Elliptic Curve key for the P-384 curve
    pub fn generate_ec_p384<R: RngCore + CryptoRng>(mut rng: R) -> Self {
        let key = elliptic_curve::SecretKey::random(&mut rng);
        Self::EcP384(Box::new(key))
    }

    /// Generate an Elliptic Curve key for the secp256k1 curve
    pub fn generate_ec_k256<R: RngCore + CryptoRng>(mut rng: R) -> Self {
        let key = elliptic_curve::SecretKey::random(&mut rng);
        Self::EcK256(Box::new(key))
    }
}

// The default implementation of SecretKey::to_sec1_pem/der do not include the
// named curve OID. This is a basic reimplementation of those two functions with
// the OID included, so that it matches the implementation in OpenSSL.
fn to_sec1_der<C>(key: &elliptic_curve::SecretKey<C>) -> Result<Zeroizing<Vec<u8>>, der::Error>
where
    C: elliptic_curve::Curve + elliptic_curve::CurveArithmetic + AssociatedOid,
    elliptic_curve::PublicKey<C>: elliptic_curve::sec1::ToEncodedPoint<C>,
    C::FieldBytesSize: elliptic_curve::sec1::ModulusSize,
{
    let private_key_bytes = Zeroizing::new(key.to_bytes());
    let public_key_bytes = key.public_key().to_encoded_point(false);
    Ok(Zeroizing::new(
        sec1::EcPrivateKey {
            private_key: &private_key_bytes,
            parameters: Some(sec1::EcParameters::NamedCurve(C::OID)),
            public_key: Some(public_key_bytes.as_bytes()),
        }
        .to_der()?,
    ))
}

fn to_sec1_pem<C>(
    key: &elliptic_curve::SecretKey<C>,
    line_ending: pem_rfc7468::LineEnding,
) -> Result<Zeroizing<String>, der::Error>
where
    C: elliptic_curve::Curve + elliptic_curve::CurveArithmetic + AssociatedOid,
    elliptic_curve::PublicKey<C>: elliptic_curve::sec1::ToEncodedPoint<C>,
    C::FieldBytesSize: elliptic_curve::sec1::ModulusSize,
{
    let private_key_bytes = Zeroizing::new(key.to_bytes());
    let public_key_bytes = key.public_key().to_encoded_point(false);
    Ok(Zeroizing::new(
        sec1::EcPrivateKey {
            private_key: &private_key_bytes,
            parameters: Some(sec1::EcParameters::NamedCurve(C::OID)),
            public_key: Some(public_key_bytes.as_bytes()),
        }
        .to_pem(line_ending)?,
    ))
}

impl From<&PrivateKey> for JsonWebKeyPublicParameters {
    fn from(val: &PrivateKey) -> Self {
        match val {
            PrivateKey::Rsa(key) => key.to_public_key().into(),
            PrivateKey::EcP256(key) => key.public_key().into(),
            PrivateKey::EcP384(key) => key.public_key().into(),
            PrivateKey::EcK256(key) => key.public_key().into(),
        }
    }
}

impl ParametersInfo for PrivateKey {
    fn kty(&self) -> JsonWebKeyType {
        match self {
            PrivateKey::Rsa(_) => JsonWebKeyType::Rsa,
            PrivateKey::EcP256(_) | PrivateKey::EcP384(_) | PrivateKey::EcK256(_) => {
                JsonWebKeyType::Ec
            }
        }
    }

    fn possible_algs(&self) -> &'static [JsonWebSignatureAlg] {
        match self {
            PrivateKey::Rsa(_) => &[
                JsonWebSignatureAlg::Rs256,
                JsonWebSignatureAlg::Rs384,
                JsonWebSignatureAlg::Rs512,
                JsonWebSignatureAlg::Ps256,
                JsonWebSignatureAlg::Ps384,
                JsonWebSignatureAlg::Ps512,
            ],
            PrivateKey::EcP256(_) => &[JsonWebSignatureAlg::Es256],
            PrivateKey::EcP384(_) => &[JsonWebSignatureAlg::Es384],
            PrivateKey::EcK256(_) => &[JsonWebSignatureAlg::Es256K],
        }
    }
}

/// A structure to store a list of [`PrivateKey`]. The keys are held in an
/// [`Arc`] to ensure they are only loaded once in memory and allow cheap
/// cloning
#[derive(Clone, Default)]
pub struct Keystore {
    keys: Arc<JsonWebKeySet<PrivateKey>>,
}

impl Keystore {
    /// Create a keystore out of a JSON Web Key Set
    #[must_use]
    pub fn new(keys: JsonWebKeySet<PrivateKey>) -> Self {
        let keys = Arc::new(keys);
        Self { keys }
    }

    /// Get the public JSON Web Key Set for the keys stored in this [`Keystore`]
    #[must_use]
    pub fn public_jwks(&self) -> PublicJsonWebKeySet {
        self.keys
            .iter()
            .map(|key| {
                key.cloned_map(|params: &PrivateKey| JsonWebKeyPublicParameters::from(params))
            })
            .collect()
    }
}

impl Deref for Keystore {
    type Target = JsonWebKeySet<PrivateKey>;

    fn deref(&self) -> &Self::Target {
        &self.keys
    }
}